

V _{RSM} , V _{RRM}	V _{VRMS}	$I_D = 30 \text{ A} (I_c = 98 ^{\circ}\text{C})$	C _{max}	R _{min}
V	V	Types	μF	Ω
200		SKD 30/02A1		0,15
400		SKD 30/04A1		0,3
800		SKD 30/08A1		0,5
1200		SKD 30/12A1		0,75
1400		SKD 30/14A1		0,9
1600		SKD 30/16A1		1
			•	

Power Bridge Rectifiers

SKD 30

Features

- Isolated metal case with screw terminals
- Blocking voltage up to 1600 V
- · High surge currents
- Easy chassis mounting
- UL recognized, file no. E 63 532

Typical Applications

- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- · Battery charger rectifiers
- Recommended snubber network: RC: 0.1 μ F, 50 Ω (P $_{R}$ = 1 W)
- Freely suspended or mounted on an insulator
- 2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm

Symbol	Conditions	Values	Units
I _D	T _a = 45 °C, isolated ¹⁾	6,5	Α
	$T_a = 45 ^{\circ}\text{C}, \text{ chassis}^{2)}$	15	Α
I _{DCL}	T _a = 45 °C, isolated ¹⁾	6,5	Α
	$T_a = 45 ^{\circ}\text{C}, \text{ chassis}^{2)}$	15	Α
	$T_a = {^{\circ}C},$		Α
I _{FSM}	T _{vi} = 25 °C, 10 ms	370	Α
	$T_{vi} = 150 ^{\circ}\text{C}, 10 \text{ms}$	320	Α
i²t	T _{vj} = 25 °C, 8,3 10 ms	680	A²s
	T _{vj} = 150 °C, 8,3 10 ms	500	A²s
V _F	T _{vi} = 25°C, I _F = 150 A	max. 2,2	V
V _(TO)	T _{vi} = 150°C	max. 0,85	V
r _T	$T_{vi}^{3} = 150^{\circ}C$	max. 12	mΩ
I_{RD}	$T_{vj}^{2} = 25^{\circ}C, V_{RD} = V_{RRM}$	300	μA
	$T_{vj} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		μA
I_{RD}	$T_{vj} = 150$ °C, $V_{RD} = V_{RRM}$	5	mA
	$T_{vj} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		mA
t _{rr}	T _{vj} = 25°C	25	μs
f_G		2000	Hz
$R_{th(j-a)}$	isolated ¹⁾	8,5	K/W
. ,	chassis ²⁾	3,3	K/W
$R_{th(j-c)}$	total	0,7	K/W
R _{th(c-s)}	total	0,1	K/W
T_{vj}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a. c. 50 60 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M _s	to heatsink	5 ± 15 %	Nm
M_t	to terminals	1,5 ± 15 %	Nm
a			m/s²
w		125	g
Fu		25	А
Case		G 13	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.